skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Loisel, Julie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The carbon (C) accumulation histories of peatlands are of great interest to scientists, land users and policy makers. Because peatlands contain more than 500 billion tonnes of C, an understanding of the fate of this dynamic store, when subjected to the pressures of land use or climate change, is an important part of climate-change mitigation strategies. Information from peat cores is often used to recreate a peatland’s C accumulation history from recent decades to past millennia, so that comparisons between past and current rates can be made. However, these present day observations of peatlands’ past C accumulation rates (known as the apparent rate of C accumulation - aCAR) are usually different from the actual uptake or loss of C that occurred at the time (the true C balance). Here we use a simple peatland model and a more detailed ecosystem model to illustrate why aCAR should not be used to compare past and current C accumulation rates. Instead, we propose that data from peat cores are used with existing or new C balance models to produce reliable estimates of how peatland C function has changed over time. 
    more » « less
  2. null (Ed.)
  3. Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data ( n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km 2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y −1 ) in northern peatlands will shift to a C source as 0.8 to 1.9 million km 2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH 4 -C) with smaller carbon dioxide forcing (1 to 2 Pg CO 2 -C) and minor nitrous oxide losses. We project that initial CO 2 -C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable. 
    more » « less